Part Number Hot Search : 
60005 P20RTA0 5KE68A DPL4519G V175LA5P 2151A1 1N474 471001B
Product Description
Full Text Search
 

To Download LMC7101 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LMC7101
Micrel
LMC7101
Low-Power Operational Amplifier
General Description
The LMC7101 is a high-performance, low-power, operational amplifier which is pin-for-pin compatible with the National Semiconductor LMC7101. It features rail-to-rail input and output performance in Micrel's IttyBittyTM SOT-23-5 package. The LMC7101 is a 500kHz gain bandwidth amplifier designed to operate from 2.7V to 12V single-ended power supplies with guaranteed performance at supply voltages of 2.7V, 3V, 5V, and 12V. This op amp's input common-mode range includes ground and extends 300mV beyond the supply rails. For example, the common-mode range is -0.3V to +5.3V with a 5V supply.
Features
* * * * * Small footprint SOT-23-5 package Guaranteed 2.7V, 3V, 5V, and 12V performance 500kHz gain-bandwidth 0.01% total harmonic distortion at 10kHz (5V, 2k) 0.5mA typical supply current at 5V
Applications
* * * * Mobile communications, cellular phones, pagers Battery-powered instrumentation PCMCIA, USB Portable computers and PDAs
Ordering Information
Part Number LMC7101AIM5 LMC7101BIM5 Marking A12A A12 Grade Prime Standard Temperature Range -40C to +85C -40C to +85C Package SOT-23-5 SOT-23-5
Pin Configuration
IN+
3
Functional Configuration
IN+ V+ OUT
2 1 1
V+ OUT
2
Part Identification
3
A12A
4 5 4 5
IN-
V-
IN-
V-
SOT-23-5 (M5)
Pin Description
Pin Number 1 2 3 4 5 Pin Name OUT V+ IN+ IN- V- Pin Function Amplifier Output Positive Supply Noninverting Input Inverting Input Negative Supply: Negative supply for split supply application or ground for single supply application.
Micrel, Inc. * 1849 Fortune Drive * San Jose, CA 95131 * USA * tel + 1 (408) 944-0800 * fax + 1 (408) 944-0970 * http://www.micrel.com
September 1999
1
LMC7101
LMC7101
Micrel
Absolute Maximum Ratings (Note 1)
Supply Voltage (VV+ - VV-) ........................................... 15V Differential Input Voltage (VIN+ - VIN-) ........... (VV+ - VV-) I/O Pin Voltage (VIN, VOUT), Note 2 ............................................. VV+ + 0.3V to VV- - 0.3V Junction Temperature (TJ) ...................................... +150C Storage Temperature ............................... -65C to +150C Lead Temperature (soldering, 10 sec.) ..................... 260C ESD, Note 5 .................................................................. 2kV
Operating Ratings (Note 1)
Supply Voltage (VV+ - VV-) .............................. 2.7V to 12V Ambient Temperature (TA) ......................... -40C to +85C Junction Temperature (TJ) ....................... -40C to +125C Max. Junction Temperature (TJ(max)), Note 3 ......... +125C Package Thermal Resistance (JA), Note 4.......... 325C/W Max. Power Dissipation ............................................ Note 3
Electrical Characteristics (2.7V)
V+ = +2.7V, V- = 0V, VCM = VOUT = V+/2; RL = 1M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted LMC7101A Symbol VOS TCVOS IB IOS RIN CMRR VCM PSRR CIN VO Parameter Input Offset Voltage Input Offset Voltage Average Drift Input Bias Current Input Offset Current Input Resistance Common-Mode Rejection Ratio Input Common-Mode Voltage 0V VCM 2.7V, Note 6 input low, CMRR 50dB input high, CMRR 50dB Power Supply Rejection Ratio Common-Mode Input Capacitance Output Swing output high, RL = 10k output low, RL = 10k output high, RL = 2k output low, RL = 2k IS SR GBW Supply Current Slew Rate Gain-Bandwidth Product VOUT = V+/2 V+ = 1.35V to 1.65V, V- = -1.35V to -1.65V, VCM = 0 Condition Typ 0.11 1.0 1.0 0.5 >1 70 -0.3 3.0 60 3 2.699 0.001 2.692 0.008 0.5 0.4 0.5 2.6 0.1 0.81 0.95 2.64 0.06 2.6 0.1 0.81 0.95 2.64 0.06 2.7 50 50 0.0 2.7 45 50 0.0 64 32 64 32 Min Max 6 LMC7101B Min Max 9 Units mV V/C pA pA T dB V V dB pF V V V V mA mA V/s MHz
Electrical Characteristics (3.0V)
V+ = +3.0V, V- = 0V, VCM = VOUT = V+/2; RL = 1M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted LMC7101A Symbol VOS TCVOS IB IOS RIN Parameter Input Offset Voltage Input Offset Voltage Average Drift Input Bias Current Input Offset Current Input Resistance Condition Typ 0.11 1.0 1.0 0.5 >1 64 32 64 32 Min Max 4 6 LMC7101B Min Max 7 9 Units mV mV V/C pA pA T
LMC7101
2
September 1999
LMC7101
LMC7101A Symbol CMRR VCM PSRR CIN VOUT Parameter Common-Mode Rejection Ratio Input Common-Mode Voltage Condition 0V VCM 3.0V, Note 6 input low, CMRR 50dB input high, CMRR 50dB Power Supply Rejection Ratio Common-Mode Input Capacitance Output Swing output high, RL = 2k output low, RL = 2k output high, RL = 600 output low, RL = 600 IS Supply Current V+ = 1.5V to 6.0V, V- = -1.5V to -6.0V, VCM = 0 Typ 74 -0.3 3.3 80 3 2.992 0.008 2.973 0.027 0.5 2.85 0.15 0.81 0.95 2.9 0.1 2.85 0.15 0.81 0.95 2.9 0.1 3.0 68 Min 60 0 3.0 60 Max LMC7101B Min 60 0 Max
Micrel
Units dB V V dB pF V V V V mA mA
Electrical Characteristics--DC (5V)
V+ = +5.0V, V- = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted LMC7101A Symbol VOS TCVOS IB IOS RIN CMRR VCM Parameter Input Offset Voltage Input Offset Voltage Average Drift Input Bias Current Input Offset Current Input Resistance Common-Mode Rejection Ratio Input Common-Mode Voltage 0V VCM 5V, Note 6 input low, CMRR 50dB input high, CMRR 50dB +PSRR -PSRR CIN VOUT Positive Power Supply Rejection Ratio Negative Power Supply Rejection Ratio Common-Mode Input Capacitance Output Swing output high, RL = 2k output low, RL = 2k output high, RL = 600 output low, RL = 600 ISC IS Output Short Circuit Current Note 7 Supply Current sourcing (VOUT = 0V) or sinking (VOUT = 5V) VOUT = V+/2 V+ = 5V to 12V, V- = 0V, VOUT = 1.5V V+ = 0V, V- = -5V to -12V, VOUT = -1.5V Condition Typ 0.11 1.0 1.0 0.5 >1 82 -0.3 5.3 82 82 3 4.989 0.011 4.963 0.037 200 0.5 120 80 0.85 1.0 4.9 4.8 0.1 0.2 120 80 0.85 1.0 4.9 4.85 0.1 0.15 4.9 4.8 0.1 0.2 4.9 4.85 0.1 0.15 5.20 5.00 70 65 70 65 60 55 -0.20 0.00 5.20 5.00 65 62 65 62 60 55 -0.20 0.00 64 32 64 32 Min Max 3 5 LMC7101B Min Max 7 9 Units mV mV V/C pA pA T dB dB V V V V dB dB dB dB pF V V V V V V V V mA mA mA mA
September 1999
3
LMC7101
LMC7101
Micrel
Electrical Characteristics--DC (12V)
V+ = +12V, V- = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted LMC7101A Symbol VOS TCVOS IB IOS RIN CMRR VCM Parameter Input Offset Voltage Input Offset Voltage Average Drift Input Bias Current Input Offset Current Input Resistance Common-Mode Rejection Ratio Input Common-Mode Voltage 0V VCM 12V, Note 6 input low, V+ = 12V, CMRR 50dB input high, V+ = 12V, CMRR 50dB +PSRR -PSRR AV Positive Power Supply Rejection Ratio Negative Power Supply Rejection Ratio Large Signal Voltage Gain V+ = 5V to 12V, V- = 0V, VOUT = 1.5V V+ = 0V, V- = -5V to -12V, VOUT = -1.5V sourcing or sinking, RL = 2k, Note 9 sourcing or sinking, RL = 600, Note 9 CIN VOUT Common-Mode Input Capacitance Output Swing output high, V+ = 12V, RL = 2k output low, V+ = 12V, RL = 2k, output high, V+ = 12V, RL = 600 output low, V+ = 12V, RL = 600 ISC Output Short Circuit Current sourcing (VOUT = 0V) or sinking (VOUT = 12V), Notes 7, 8 VOUT = V+/2 Condition Typ 0.11 1.0 1.0 0.5 >1 82 -0.3 12.3 82 82 340 300 3 11.98 0.02 11.93 0.07 300 200 120 1.5 1.71 11.73 11.65 0.27 0.35 200 120 1.5 1.71 11.9 11.87 0.10 0.13 11.73 11.65 0.27 0.35 11.9 11.87 0.10 0.13 12.2 12.0 70 65 70 65 80 40 15 10 65 60 -0.20 0.00 12.2 12.0 65 62 65 62 80 40 15 10 65 60 -0.20 0.00 64 32 64 32 Min Max 6 LMC7101B Min Max 9 Units mV V/C pA pA T dB dB V V V V dB dB dB dB V/mV V/mV V/mV V/mV pF V V V V V V V V mA mA mA mA
IS
Supply Current
0.8
LMC7101
4
September 1999
LMC7101
Micrel
Electrical Characteristics--AC (5V)
V+ = 5V, V- = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted LMC7101A Symbol THD SR GBW Parameter Total Harmonic Distortion Slew Rate Gain-Bandwidth Product Condition f = 10kHz, AV = -2, RL = 2k, VOUT = 4.0 VPP Typ 0.01 0.3 0.5 Min Max LMC7101B Min Max Units % V/s MHz
Electrical Characteristics--AC (12V)
V+ = 12V, V- = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted LMC7101A Symbol THD SR GBW m Gm en in Parameter Total Harmonic Distortion Slew Rate Gain-Bandwidth Product Phase Margin Gain Margin Input-Referred Voltage Noise Input-Referred Current Noise f = 1kHz, VCM = 1V f = 1kHz Condition f = 10kHz, AV = -2, RL = 2k, VOUT = 8.5 VPP V+ = 12V, Note 10 Typ 0.01 0.3 0.5 45 10 37 1.5 0.19 0.15 0.19 0.15 Min Max LMC7101B Min Max Units % V/s V/s MHz dB
nV/ Hz
fA/ Hz
General Notes: Devices are ESD protected; however, handling precautions are recommended. All limits guaranteed by testing on statistical analysis. Note 1. Note 2. Note 3. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside its recommended operating ratings. I/O Pin Voltage is any external voltage to which an input or output is referenced. The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(max); the junction-to-ambient thermal resistance, JA; and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated using: PD = (TJ(max) - TA) / JA. Exceeding the maximum allowable power dissipation will result in excessive die temperature. Thermal resistance, JA, applies to a part soldered on a printed-circuit board. Human body model, 1.5k in series with 100pF. Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. Continuous short circuit may exceed absolute maximum TJ under some conditions. Shorting OUT to V+ when V+ > 12V may damage the device. RL connected to 5.0V. Sourcing: 5V VOUT 12V. Sinking: 2.5V VOUT 5V.
Note 4. Note 5. Note 6. Note 7. Note 8. Note 9.
Note 10. Device connected as a voltage follower with a 12V step input. The value is the positive or negative slew rate, whichever is slower.
September 1999
5
LMC7101
LMC7101
Micrel
Typical Characteristics
Supply Current vs. Supply Voltage
-40C INPUT CURRENT (pA) 800 600 85C 400 200 0 25C 1000
-PSRR (dB) 60 40 20 0 TA = 25C 5V
1000 SUPPLY CURRENT (A)
10000
Input Current vs. Junction Temperature
100 80
-PSRR vs. Frequency
12V 2.7V
100
10
0
2 4 6 8 10 SUPPLY VOLTAGE (V)
12
1 -40 0 40 80 120 160 JUNCTION TEMPERATURE (C)
-20 1x101
1x102 1x103 1x104 FREQUENCY (Hz)
1x105
CURRENT SINK / SOURCE (mA)
120 100 +PSRR (dB) 80 60 40 20 0 1x101 12V
+PSRR vs. Frequency
5V CMRR (dB)
140 120 100 80 60 40 20
CMRR vs. Frequency
1000 100 10 1 0.1
12V 2.7V 5V
Sink / Source Currents vs. Output Voltage
TA = 25C
2.7V
TA = 25C
TA = 25C
1x102 1x103 1x104 FREQUENCY (Hz)
1x105
0 1x101
1x102 1x103 1x104 FREQUENCY (Hz)
1x105
0.01 0.001
0.01 0.1 1 OUTPUT VOLTAGE (V)
10
0.8 0.7 SLEW RATE (V/s)
Falling Slew Rate vs. vs. Supply Voltage
0.8 0.7 SLEW RATE (V/s) 0.6 0.5 0.4 0.3 0.2 0.1 12 0 0
Rising Slew Rate vs. vs. Supply Voltage
800 OFFSET VOLTAGE (V)
Offset Voltage vs. Supply Voltage
0.6 0.5 0.4 0.3 0.2 0.1 0 0 +85C +25C -40C
600 85C 400 25C -40C 200
-40C +25C
+85C
2 4 6 8 10 SUPPLY VOLTAGE (V)
2 4 6 8 10 SUPPLY VOLTAGE (V)
12
0 0
2 4 6 8 10 SUPPLY VOLTAGE (V)
12
100 80
Phase Margin vs. Capacitive Load
12V 5V
PHASE MARGIN ()
60 40 20 0 100
3V 2.7V TA = 25C AV = 1 1000 200 300 500 LOAD CAPACITANCE (pF)
LMC7101
6
September 1999
LMC7101
Micrel
100 80 GAIN (dB)
2.7V Open-Loop Frequency Response
80
5V Open-Loop Frequency Response
80
12V Open-Loop Frequency Response
GAIN (dB)
RL = 1M 60 40 20 0 1x102 RL = 2k TA = 25C
60 GAIN (dB)
60 1M 2k
40
1M 2k
40
20 600 TA = 25C 0 1x102 1x103 1x104 FREQUENCY (Hz) 1x105
20
TA = 25C
600
1x103 1x104 FREQUENCY (Hz)
1x105
0 1x102
1x103 1x104 FREQUENCY (Hz)
1x105
100 75
2.7V Open-Loop Gain and Phase
135
100
5V Open-Loop Gain and Phase
100pF ()
120 90
120 100 80
12V Open-Loop Gain and Phase
TA = 25C RL = 1M 100pF () 500pF ()
150 120 90 60
OFFSET VOLTAGE (V)
100pF () 500pF () TA = 25C RL = 1M
90
80 60 40 20 0 -20 1x102 TA = 25C RL = 1M 100pF (dB) 500pF (dB) 1000pF (dB) 1x103 1x104 1x105 500pF () 1000pF ()
PHASE ()
PHASE ()
50 25 0
45 500pF (dB) 0
60 40 20 0 -20 1x102 100pF (dB) 500pF (dB) 1000pF (dB) 1x103 1x104 1x105 FREQUENCY (Hz) 1000pF ()
30 0 -30
30 0 -30
100pF (dB)
-45 -90 1x106
-25 1x102
1x103
1x104
1x105
-60 1x106
-60 1x106
FREQUENCY (Hz)
COMMON-MODE VOLTAGE (V)
September 1999
7
LMC7101
PHASE ()
GAIN (dB)
GAIN (dB)
60
LMC7101
Micrel
Functional Characteristics
Inverting Small-Signal Pulse Response Inverting Large-Signal Pulse Response
INPUT
OUTPUT
OUTPUT
INPUT
Noninverting Small-Signal Pulse Response
Noninverting Large-Signal Pulse Response
INPUT
OUTPUT
Input Voltage Noise vs. Frequency
LMC7101
8
OUTPUT
INPUT
September 1999
LMC7101
Micrel
0.011V = 8.8 9 0.001245A Driving Capacitive Loads ROUT = Driving a capacitive load introduces phase-lag into the output signal, and this in turn reduces op-amp system phase margin. The application that is least forgiving of reduced phase margin is a unity gain amplifier. The LMC7101 can typically drive a 100pF capacitive load connected directly to the output when configured as a unity-gain amplifier. Using Large-Value Feedback Resistors A large-value feedback resistor (> 500k) can reduce the phase margin of a system. This occurs when the feedback resistor acts in conjunction with input capacitance to create phase lag in the fedback signal. Input capacitance is usually a combination of input circuit components and other parasitic capacitance, such as amplifier input capacitance and stray printed circuit board capacitance. Figure 2 illustrates a method of compensating phase lag caused by using a large-value feedback resistor. Feedback capacitor CFB introduces sufficient phase lead to overcome the phase lag caused by feedback resistor RFB and input capacitance CIN. The value of CFB is determined by first estimating CIN and then applying the following formula:
Application Information
Input Common-Mode Voltage Some amplifiers exhibit undesirable or unpredictable performance when the inputs are driven beyond the common-mode voltage range, for example, phase inversion of the output signal. The LMC7101 tolerates input overdrive by at least 200mV beyond either rail without producing phase inversion. If the absolute maximum input voltage (700mV beyond either rail) is exceeded, the input current should be limited to 5mA maximum to prevent reducing reliability. A 10k series input resistor, used as a current limiter, will protect the input structure from voltages as large as 50V above the supply or below ground. See Figure 1.
RIN VIN 10k
VOUT
Figure 1. Input Current-Limit Protection Output Voltage Swing Sink and source output resistances of the LMC7101 are equal. Maximum output voltage swing is determined by the load and the approximate output resistance. The output resistance is:
RIN x CIN RFB x CFB
CFB RFB RIN VOUT CIN
ROUT =
VDROP ILOAD
VIN
VDROP is the voltage dropped within the amplifier output stage. VDROP and ILOAD can be determined from the VO (output swing) portion of the appropriate Electrical Characteristics table. ILOAD is equal to the typical output high voltage minus V+/2 and divided by RLOAD. For example, using the Electrical Characteristics DC (5V) table, the typical output high voltage using a 2k load (connected to V+/2) is 4.989V, which produces an ILOAD of
Figure 2. Cancelling Feedback Phase Lag Since a significant percentage of CIN may be caused by board layout, it is important to note that the correct value of CFB may change when changing from a breadboard to the final circuit layout.
4.989V - 2.5V 1.245mA = 1.245mA . 2k
Voltage drop in the amplifier output stage is: VDROP = 5.0V - 4.989V VDROP = 0.011V Because of output stage symmetry, the corresponding typical output low voltage (0.011V) also equals VDROP. Then:
September 1999
9
LMC7101
LMC7101
Typical Circuits Some single-supply, rail-to-rail applications for which the LMC7101 is well suited are shown in the circuit diagrams of Figures 3 through 7.
V+ VIN
3 2
Micrel
VS 0.5V to Q1 VCEO(sus)
Load
V+
LMC7101
1
VOUT 0V to V+
V+ 0V to AV
4 5
VOUT 0V to V+
VIN 0V to 2V
3
2
LMC7101
1
IOUT Q1 VCEO = 40V 2N3904 IC(max) = 200mA
4 5
{
R2 900k R1 100k
Change Q1 and RS for higher current and/or different gain.
RS 10 12W
IOUT =
Figure 3a. Noninverting Amplifier
VIN = 100mA/V as shown RS
Figure 5. Voltage-Controlled Current Sink
100 V+
R4 C1 0.001F
AV = 1 + R2 10 R1
4
VOUT (V)
100k V+
2
LMC7101
1
VOUT
V+ 0V
3
0
0
VIN (V)
100
5
Figure 3b. Noninverting Amplifier Behavior
V+
3 2
V+
R2 100k R3 100k
R4 100k
VIN 0V to V+
LMC7101
1
4 5
VOUT 0V to V+ VOUT = VIN
Figure 6. Square Wave Oscillator
CIN R1 33k R2 330k V+
4 2
Figure 4. Voltage Follower
LMC7101
1
COUT RL
VOUT
0V
3 5
V+
R3 330k C1 1F
R4 330k
AV = -
R2 330k = = -10 R1 33k
Figure 7. AC-Coupled Inverting Amplifier
LMC7101
10
September 1999
LMC7101
Micrel
Package Information
1.90 (0.075) REF 0.95 (0.037) REF
1.75 (0.069) 1.50 (0.059)
3.00 (0.118) 2.60 (0.102)
DIMENSIONS: MM (INCH) 3.02 (0.119) 2.80 (0.110) 1.30 (0.051) 0.90 (0.035) 10 0 0.15 (0.006) 0.00 (0.000) 0.20 (0.008) 0.09 (0.004)
0.50 (0.020) 0.35 (0.014)
0.60 (0.024) 0.10 (0.004)
SOT-23-5 (M5)
September 1999
11
LMC7101
LMC7101
Micrel
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
USA
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. (c) 1999 Micrel Incorporated
LMC7101
12
September 1999


▲Up To Search▲   

 
Price & Availability of LMC7101

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X